MARS®多變數回歸分析軟體-統計分析軟體/新永資訊有限公司

MARS®多變數回歸分析軟體

MARS®多變數回歸分析軟體

  • MARS®多變數回歸分析軟體
  • 編號
  • 類別
    統計分析軟體
  • 介紹
    MARS®(Multivariate Adaptive Regression Splines) 是 CART 的夥伴,專注於開發和部署準確且易於理解的回歸模型。
  • 價格

MARS Multivariate Regression Analysis Software

The MARS methodology's approach to regression modeling effectively uncovers important data patterns and relationships that are difficult, if not impossible, for other regression methods to reveal. The MARS modeling engine builds its model by piecing together a series of straight lines with each allowed its own slope. This permits the MARS modeling engine to trace out any pattern detected in the data.

High-Quality Regression and Classification
The MARS Model is designed to predict numeric outcomes such as the average monthly bill of a mobile phone customer or the amount that a shopper is expected to spend in a web site visit. The MARS engine is also capable of producing high quality classification models for a yes/no outcome. The MARS engine performs variable selection, variable transformation, interaction detection, and self-testing, all automatically and at high speed.

High-Performance Results
Areas where the MARS engine has exhibited very high-performance results include forecasting electricity demand for power generating companies, relating customer satisfaction scores to the engineering specifications of products, and presence/absence modeling in geographical information systems (GIS).

 

系統需求


Windows System Requirements
OS:
Windows 7 SP 1 or later, Windows 8 or 8.1, Windows 10.

RAM:
2 GB.
Processor:
Intel® Pentium® 4 or AMD Athlon™ Dual Core, with SSE2 technology.
HD:
2 GB (minimum) free space available.
Screen Resolution:
1024 x 768 or higher.

Linux System Requirements
OS (64-Bit Only):
Ubuntu 14.04 or 16.04, CentOS 6.9 or 7.5, RHEL 6.9 or 7.5.
RAM:
2 GB.
Processor:
Intel® Pentium® 4 or AMD Athlon™ Dual Core, with SSE2 technology.
HD:
2 GB (minimum) free space available.

MARS®多變數回歸分析軟體

MARS 方法的回歸建模方法有效地揭示了其他回歸方法難以甚至不可能揭示的重要數據模式和關係。MARS 建模引擎通過將一系列直線拼接在一起來構建模型,每條直線都有自己的斜率。這允許 MARS 建模引擎追踪數據中檢測到的任何模式。

高質量的回歸和分類
MARS 模型旨在預測數字結果,例如移動電話客戶的平均每月賬單或購物者預計在網站訪問中花費的金額。MARS 引擎還能夠為是/否結果生成高質量的分類模型。MARS引擎自動高速執行變量選擇、變量轉換、交互檢測和自檢。

高性能結果
MARS 引擎表現出非常高性能結果的領域包括預測發電公司的電力需求、將客戶滿意度分數與產品的工程規格相關聯,以及地理信息系統 (GIS) 中的存在/不存在建模。

 

SmartPLS 結構方程建模軟體

SmartPLS是一種具有圖形用戶界面的軟件,用於使用偏最小二乘路徑建模方法進行基於變異的結構方程式建模。用戶可以使用基本PLS-SEM,加權PLS-SEM,一致PLS-SEM和sumscores回歸算法來估計模型及其數據。該軟件可計算標準結果評估標準,並支持其他統計分析。

SmartPLS 結構方程建模軟體

PROSuite 統計分析軟體

ProSuite 是 Provalis Research 的集成文本分析工具(QDA Miner、WordStat、SimStat)的集合,允許人們探索、分析和關聯結構化和非結構化數據。Provalis Research 文本分析工具允許使用 QDA Miner 對文檔和圖像執行高級計算機輔助定性編碼,將 WordStat 強大的內容分析和文本挖掘功能應用於文本數據,以及對數值和分類數據執行高級統計分析使用 SimStat。ProSuite 不會將研究人員和分析師限制在單一的文本分析方法中,而是允許他們選擇最適合研究問題或可用數據的方法。

PROSuite 統計分析軟體

SuperSMITH® 5.0AZ 可靠度分析軟體

SuperSMITH®軟件在5.0AZ及更高版本中具有新外觀。全球首個廣泛使用的Weibull工程軟件的製造商Fulton Findings LLC,已經為SuperSMITH Weibull和SuperSMITH Visual提供了更加緊密集成的用戶界面,從而向前邁進了一步。下面顯示的新圖標佈局將通用功能與用於可變性建模,趨勢分析和預測的獨特工具合併在一起。熟悉的數據網格(數據輸入和數據編輯)和結果框(圖表和報告)幾乎保持不變。更改涉及以簡化的方式將較大尺寸的圖標與關聯的下拉菜單集成在一起。保留了所有以前的功能,並在Abernethy Risk,加速測試,Barringer過程可靠性和Monte Carlo Simulation等專業領域中添加了新功能。

SuperSMITH® 5.0AZ 可靠度分析軟體