SmartPLS 結構方程建模軟體 | 新永資訊有限公司

SmartPLS 結構方程建模軟體

SmartPLS 結構方程建模軟體

  • SmartPLS 結構方程建模軟體
  • 編號
  • 類別
    統計分析軟體
  • 介紹
    SmartPLS是一種具有圖形用戶界面的軟件,用於使用偏最小二乘路徑建模方法進行基於變異的結構方程式建模。用戶可以使用基本PLS-SEM,加權PLS-SEM,一致PLS-SEM和sumscores回歸算法來估計模型及其數據。該軟件可計算標準結果評估標準,並支持其他統計分析。
  • 價格

SmartPLS analyses

SmartPLS is the workhorse for all PLS-SEM analyses - for beginners as well as experts

Here is our (constantly growing) list of all available calculation methods. Relevant innovative algorithms will also be made available in SmartPLS within a short time. We promise.
  • Partial least squares (PLS) path modeling
  • Ordinary least squares (OLS) regression based on sumscores
  • Consistent PLS (PLSc)
  • Weighted PLS (WPLS), weighted OLS (WOLS) and weighted consistent PLS (WPLSc)
  • Bootstrapping and the use of advanced bootstrapping options
  • Blindfolding
  • Importance-performance map analysis (IPMA)
  • PLS multi-group analysis (MGA): Analyses the difference and significance of group-specific PLS path model estimations
  • Higher-order Models
  • Mediation: Estimation of indirect effects and their bootstrap-based significance testing
  • Moderation: Estimation of interaction effects and their bootstrap-based significance testing
  • Nonlinear relationships: Estimation of quadratic effects and their bootstrap-based significance testing
  • Confirmatory tetrad analysis (CTA): A statistical technique which allows for empirical testing the measurement model setup
  • Finite mixture (FIMIX) segmentation: A latent class approach which allows identifying and treating unobserved heterogeneity in path models
  • Prediction-oriented segmentation (POS): An approach to identify groups of data
  • PLS Predict: A technique to determine the predictive quality of the PLS path model
  • Prediction-oriented model selection

系統需求

 SmartPLS 的最小系統需求
  • 大約 200MB 的可用硬碟空間
  • 至少2GB的RAM
  • Windows 或 MacOSX 的作業系統

安裝

如需要安裝 SmartPLS ,請下載適用於您操作系統的安裝檔,這些是常見的安裝檔,您可以信任它們的默認設置

授權方式

SmartPLS 可以在 學生模式 (免費但受限)或 專業模式 (啟用所有功能)下運行,專業模式需要許可證,可以通過註冊我們的 免費試用密鑰 購買 許可證來獲得。

更新紀錄

 Version 4.0.9.6, released 2023-09-01
  • Fixed: Resolved PLS Predict issues with binary constructs and standardized PLS-SEM results for accurate predictions.
  • Fixed: Pairwise regression with intercept problems affecting unstandardized PLS-SEM and PLS Predict.
  • Fixed: MIMIC model validation issues in CB-SEM.
  • Improved: Eliminated indicator duplication from "create data file" function, streamlining data management.
  • Improved: Goodness-of-fit evaluation in CB-SEM.
  • Improved: Added simple validations to identify model identification problems in CB-SEM models.
  • Improved: Enhanced validation in data import dialog for covariance data files, ensuring smoother data handling.
  • Improved: Additional sample projects.
  • Improved: Translations

Version 4.0.9.5, released 2022-06-23

  • Fixed: Minor CB-SEM and CBSEM-Bootstrapping calculation issues.
  • Fixed: Minor translation issues.
  • Improved: Updated internal libraries.
  • Improved: Added option to exclude memory consumptive per-sample results from Bootstrapping and Permutation reports.
  • Improved: Validation and calculation of second order constructs in CB-SEM models.
  • Improved: Changed defaults for creating data files from reports to include other columns.
  • Improved: Additional and extended sample projects.

Version 4.0.7.8, released 2022-08-22

  • Improved: Documentation.
  • Improved: Algorithm dialog.
  • Improved: Speed of all algorithms.
  • Improved: Fundamentally renewed and improved results reports.
  • Improved: Charts and figures from model results.
  • Improved: Additional results for descriptive statistics and many algorithms.
  • Improved: Performance of Excel report generation.
  • Improved: Generation of data groups.
  • Improved: Bootstrapping with fixed seed option.
  • Improved: Higher-order models using the two-stage approach, since the first-stage construct scores can now be stored in a data set within SmartPLS.
  • Fixed: License issues.

Version 3.3.9, released 2022-03-28

  • Fixed: Issues with trial.

Version 3.3.8, released 2022-03-27

  • Fixed: Minor stability issues.
  • Improved: Upgraded internal libraries.

Version 3.3.7, released 2022-01-23

  • Improved: Updated translation files.
  • Improved: Upgraded internal libraries.

Version 3.3.6, released 2022-01-19

  • Improved: Improved performance of several algorithms.
  • Improved: Upgraded internal libraries.

Version 3.3.5, released 2021-12-20

  • Fixed: Deadlocks occurred on some computers during save operations.

Version 3.3.4, released 2021-12-16

  • Fixed: Log4J Vulnerability fix. Log4J updated to a patched version (2.16.0)
  • Improved: Upgraded internal libraries.

Version 3.3.3, released 2021-01-11

  • Improved: Upgraded internal libraries.
  • Improved: GUI adjustments, for a better display under Windows 10 and MacOSX Big Sur.
  • Improved: Indicators that contain non-numeric values are marked with an exclamation mark + tooltip in the datafile editor.
  • Fixed: Display errors and refresh problems under MacOSX Big Sure.
  • Fixed: Performance issue with PLSC algorithm.
  • Fixed: Installation problem in the Persian language area.

SmartPLS 結構方程建模軟體

SmartPLS 是所有 PLS-SEM 分析的主要解決方案 - 適合初學者和專家

以下是我們所有可用分析方式的列表(持續增加中),我們承諾相關的創新分析方式也將在短時間內在 SmartPLS 中提供。
  • Partial least squares (PLS) path modeling
  • Ordinary least squares (OLS) regression based on sumscores
  • Consistent PLS (PLSc)
  • Weighted PLS (WPLS), weighted OLS (WOLS) and weighted consistent PLS (WPLSc)
  • Bootstrapping and the use of advanced bootstrapping options
  • Blindfolding
  • Importance-performance map analysis (IPMA)
  • PLS multi-group analysis (MGA): Analyses the difference and significance of group-specific PLS path model estimations
  • Higher-order Models
  • Mediation: Estimation of indirect effects and their bootstrap-based significance testing
  • Moderation: Estimation of interaction effects and their bootstrap-based significance testing
  • Nonlinear relationships: Estimation of quadratic effects and their bootstrap-based significance testing
  • Confirmatory tetrad analysis (CTA): A statistical technique which allows for empirical testing the measurement model setup
  • Finite mixture (FIMIX) segmentation: A latent class approach which allows identifying and treating unobserved heterogeneity in path models
  • Prediction-oriented segmentation (POS): An approach to identify groups of data
  • PLS Predict: A technique to determine the predictive quality of the PLS path model
  • Prediction-oriented model selection

Mplus 8.11 統計分析模擬軟體

Mplus 是一個統計建模程式,為研究人員提供了一個靈活的工具來分析他們的數據。Mplus 在一個程序中為研究人員提供了廣泛的模型、估計器和算法選擇,該程序具有易於使用的界面和數據和分析結果的圖形顯示。Mplus 允許分析橫截面和縱向數據、單級和多級數據、來自具有觀察到或未觀察到的異質性的不同人群的數據以及包含缺失值的數據。

Mplus 8.11 統計分析模擬軟體

Reliability & Maintenance Analyst 信賴度分析軟體

這是一個多功能、功能強大且用戶友好的可靠性分析軟件包。該軟件由兩個模塊組成;壽命數據分析模塊和維修優化模塊。使用允許多達 20 億個數據點的專用數據輸入網格可以輕鬆輸入數據。所有圖形都可以通過易於使用的對話框選項卡進行自定義。分析完成後,使用報告編寫器以與主要文字處理器兼容的格式創建自定義輸出。

Reliability & Maintenance Analyst 信賴度分析軟體

NCSS 2022 統計分析軟體

NCSS 軟件提供了一個完整且易於使用的數百種統計和圖形工具集合,用於分析和可視化您的數據。 用於數據分析的 NCSS 軟件帶有完整的集成文檔、免費培訓視頻以及來自Phd統計人員團隊的完整電話和電子郵件支持。 探索全球數以千計的研究人員、顧問、專業人士、工程師和科學家正在使用的產品。

NCSS 2022 統計分析軟體