HB-Reg v4.2.2303 貝斯階層回歸軟體-研究分析軟體/新永資訊有限公司

HB-Reg v4.2.2303 貝斯階層回歸軟體

HB-Reg v4.2.2303 貝斯階層回歸軟體

  • HB-Reg v4.2.2303 貝斯階層回歸軟體
  • 編號
  • 類別
    研究分析軟體
  • 介紹
    什麼是分層貝斯階層回歸(HB-Reg)?在市場研究數據的分析中,有很多時候研究人員有受訪者,商店或其他實驗單位的樣本,並希望估計每個單位的單獨回歸係數。在過去幾年中,分層貝葉斯(HB)估計在市場營銷研究中發揮著越來越重要的作用。它可以在精度和有效性方面改進參數估計(例如β權重和效用)。我們的HB-Reg軟件用於基於回歸的問題,其中受訪者提供包含連續因變量的多個觀察(病例)。
  • 價格

HB-Reg v4.2.2303 Bayside regression software

Overview
HB-Reg software is a general analytical tool for estimating regression problems at the individual level involving a continuous dependent variable. It is only appropriate when respondents provide multiple observations (cases).

Features
•Up to 1000 parameters per respondent, for unlimited respon
  dents.
•Uses comma-delimited input files
•HB-Reg is designed to run on Microsoft Windows 2000 or
  later.

Methodology
In the analysis of marketing research data, there are many occasions when the researcher has a sample of respondents, stores, or other experimental units, and wishes to estimate separate regression coefficients for each unit.
Consider three examples:
In full-profile conjoint analysis, respondents give preference ratings for hypothetical product concepts. Regression analysis is often used, where the independent variables are columns of a "design matrix" describing the concepts, and the dependent variable consists of preference ratings.
Respondents in a customer satisfaction study provide ratings of several companies. Some ratings are on "explanatory" variables, such as customer service, product durability, convenience of use, etc. Other ratings are more general, such as overall satisfaction with the companies' products. One goal of the study is to infer the relative importance of each explanatory factor in determining overall satisfaction.
During a pricing experiment in grocery stores, the prices of several products are varied systematically in different time periods, and sales of each product are measured with scanner data. The independent variables are product prices and other factors such as the presence of displays, coupons, and newspaper features. The dependent variables are product sales.
In each situation, respondents or stores may have different regression functions. In the past, researchers have often tried to handle this problem by ignoring heterogeneity among individuals, pooling all the data, and estimating a single set of regression coefficients that describe the "average" individual. However, aggregate regression confounds heterogeneity (true differences between respondents/stores) with noise. Because HB-Reg can distinguish heterogeneity from noise, it results in more stable individual- AND aggregate-level estimates of betas. HB-Reg also is more robust in the case of multicolinearity among the independent variables than aggregate regression.
Several recent articles have shown that hierarchical Bayes estimation can do a creditable job of estimating individual parameters even when there are more parameters than observations per individual. This is done by considering each individual to be a sample from a population of similar individuals, and "borrowing" information from other individuals in the estimation for each one.
 HB-Reg offers parameter constraints, meaning the ability to constrain certain parameters to be larger (smaller) than others, or to be greater than or less than zero. Advanced users can also control the prior variance and covariances, and degrees of freedom for the prior covariance matrix. These features will permit more reasonable estimation of parameters, even when relatively sparse information is available within the unit of analysis.
When using the full-size system, up to 1000 parameters per individual can be estimated. HB-Reg requires the Microsoft .NET framework.

 

系統需求

Windows, Windows 95, Windows 98, Windows 2000, Windows XP, Windows Vista, Windows NT, Excel, PowerPoint, and Word are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

 

HB-Reg v4.2.2303 貝斯階層回歸軟體

概述
HB-Reg軟件是用於評估涉及連續因變量的個體水平上回歸問題的通用分析工具。僅當受訪者提供多個觀察結果(案例)時才適用。

特徵
•每個受訪者最多可使用1000個參數,適用於無限個受訪者。
•使用逗號分隔的輸入文件
•HB-Reg設計為在Microsoft Windows 2000或更高版本上運行。

方法
在市場研究數據的分析中,很多情況下,研究人員都有受訪者,商店或其他實驗單位的樣本,並希望為每個單位估計單獨的回歸係數。
考慮以下三個示例:
在全面剖析的聯合分析中,受訪者對假設的產品概念給出了偏好等級。經常使用回歸分析,其中自變量是描述概念的“設計矩陣”的列,而因變量由偏好等級組成。
客戶滿意度研究中的受訪者提供了幾家公司的評級。一些等級是關於“解釋性”變量的,例如客戶服務,產品耐用性,使用方便性等。其他等級則更一般,例如對公司產品的總體滿意度。該研究的一個目標是推斷每個解釋因素在確定總體滿意度中的相對重要性。
在雜貨店的定價實驗中,幾種產品的價格在不同的時間段內系統地變化,並且每種產品的銷售額都使用掃描儀數據來衡量。自變量是產品價格和其他因素,例如顯示器,優惠券和報紙特徵的存在。因變量是產品銷售。
在每種情況下,受訪者或商店可能具有不同的回歸函數。過去,研究人員經常嘗試通過忽略個體之間的異質性,合併所有數據並估計描述“平均”個體的一組回歸係數來處理此問題。但是,聚集回歸將異質性(受訪者/商店之間的真實差異)與噪聲混淆。因為HB-Reg可以區分異質性與噪聲,所以它可以使beta的個體和集合級估計更加穩定。在自變量之間存在多重共線性的情況下,HB-Reg也比聚合回歸更健壯。
最近的幾篇文章表明,即使每個個體的參數多於觀測值,分層貝葉斯估計也可以在估計各個參數方面做得不錯。通過將每個個體視為一組相似個體的樣本,並從其他個體“借用”信息來估算每個個體來完成此操作。
 HB-Reg提供參數約束,這意味著可以將某些參數限制為大於(小於)其他參數,或者大於或小於零。高級用戶還可以控制先驗方差和協方差,以及先驗方差矩陣的自由度。這些功能將允許對參數進行更合理的估計,即使在分析單位內可獲得相對稀疏的信息時也是如此。
使用全尺寸系統時,每個人最多可以估計1000個參數。HB-Reg需要Microsoft .NET框架。

 

BrainVoyager 22.4 神經影像數據管理和分析軟體

我們的旗艦產品 BrainVoyager 是一款功能強大的神經影像學軟件包,用於數據管理和數據分析。它最初是用於分析解剖和功能 MRI 數據集的工具,但多年來已發展成為用於 fMRI、DTI、EEG 和 MEG 數據的多模態分析工具。該軟件經過高度優化,用戶友好,可在所有主要計算機平台上運行;當前版本可在 Windows (7/8/10)、Linux(例如 Ubuntu、SUSE、Fedora)和 macOS(10.10 或更高版本)上運行。 BrainVoyager 是一個 64 位程序,支持分析需要超過 3 GB RAM 的大型數據集。為了在每個平台上獲得最大速度,BrainVoyager 已使用 C++ 進行編程,具有優化且高效的統計、數值和圖像處理例程。

BrainVoyager 22.4 神經影像數據管理和分析軟體

Frontier Analyst 4 資料包絡分析軟體

在您的組織提高您的效率並且重新解釋性能測量以Frontier Analyst®。 使用技術以資料包絡分析(DEA)著名,執行宗旨,採取您在純粹表現之外財政措施的比較效率分析研究。 理想用於零售,加盟,金融業務,醫療保健,公共業務和許多其他事務單位根據企業。Frontier Analyst®易於使用、結合強大功能並幫助您達到您的目標。

Frontier Analyst 4 資料包絡分析軟體

DADiSP 6.7 (pronounced day-disp) 數據處理分析軟體

DADiSP(發音為day-disp)是一個交互式圖形工作表-一種面向視覺的軟件包,用於顯示,管理,分析和表示 科學和技術數據。如果您收集,處理,編輯,減少,轉換,顯示或分析數據,DADiSP可以處理和簡化您的數據需求。簡而言之,如果您使用的是技術數據,DADiSP非常適合您。

DADiSP 6.7  (pronounced day-disp) 數據處理分析軟體